Extensions 1→N→G→Q→1 with N=S32xC6 and Q=C2

Direct product G=NxQ with N=S32xC6 and Q=C2
dρLabelID
S32xC2xC648S3^2xC2xC6432,767

Semidirect products G=N:Q with N=S32xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S32xC6):1C2 = S3xD6:S3φ: C2/C1C2 ⊆ Out S32xC6488-(S3^2xC6):1C2432,597
(S32xC6):2C2 = S3xC3:D12φ: C2/C1C2 ⊆ Out S32xC6248+(S3^2xC6):2C2432,598
(S32xC6):3C2 = D6:4S32φ: C2/C1C2 ⊆ Out S32xC6248+(S3^2xC6):3C2432,599
(S32xC6):4C2 = D6:S32φ: C2/C1C2 ⊆ Out S32xC6488-(S3^2xC6):4C2432,600
(S32xC6):5C2 = C3xS3xD12φ: C2/C1C2 ⊆ Out S32xC6484(S3^2xC6):5C2432,649
(S32xC6):6C2 = C3xD6:D6φ: C2/C1C2 ⊆ Out S32xC6484(S3^2xC6):6C2432,650
(S32xC6):7C2 = C3xS3xC3:D4φ: C2/C1C2 ⊆ Out S32xC6244(S3^2xC6):7C2432,658
(S32xC6):8C2 = C3xDic3:D6φ: C2/C1C2 ⊆ Out S32xC6244(S3^2xC6):8C2432,659
(S32xC6):9C2 = C6xS3wrC2φ: C2/C1C2 ⊆ Out S32xC6244(S3^2xC6):9C2432,754
(S32xC6):10C2 = C2xC33:D4φ: C2/C1C2 ⊆ Out S32xC6244(S3^2xC6):10C2432,755
(S32xC6):11C2 = C2xS33φ: C2/C1C2 ⊆ Out S32xC6248+(S3^2xC6):11C2432,759

Non-split extensions G=N.Q with N=S32xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S32xC6).1C2 = C3xS32:C4φ: C2/C1C2 ⊆ Out S32xC6244(S3^2xC6).1C2432,574
(S32xC6).2C2 = S32:Dic3φ: C2/C1C2 ⊆ Out S32xC6244(S3^2xC6).2C2432,580
(S32xC6).3C2 = S32xDic3φ: C2/C1C2 ⊆ Out S32xC6488-(S3^2xC6).3C2432,594
(S32xC6).4C2 = S32xC12φ: trivial image484(S3^2xC6).4C2432,648

׿
x
:
Z
F
o
wr
Q
<